
Get current time is a critical part of the initialisation process.
Try to read current UTC time from the external RTC module
and update time on the pycom board.
If the RTC module is not connected, or it has not yet been
configured, then try to get current time from the GPS module
and update both the external RTC and the RTC on the
pycom board. A blue light blinks while the GPS operates.
If none of these succeed, an exception is raised (see Except
of Stage 2). At this point the user is given a table of possible
issues and solutions by the logger on how to get UTC to
continue the execution

The RGB LED is used
extensively to indicate the current
status of the device, and is
extremely useful when dealing
with errors. (See exception
handling in the main.) The user
should always go through the
initialisation phase upon boot,
paying close attention to the
LED. If there is a periodic red
blink or no green heartbeat every
5 seconds, something has
probably gone wrong, and
requires immediate attention.

Upon pressing the config button for longer than 3 seconds, the
LED flashes blue and configuration mode is entered. During
configuration mode the device turns into an access point with the
name: "NewPyonAir", and password: "newpyonair", or whatever
the device name and password were set previously. 
The user has to connect to the device over WiFi and navigate to 
http://192.168.4.10  in their browser. Once the user has
connected and opened the configurations page, the LED flashes
green. To configure the device, all fields have to be filled in, and
the 'Save' button has to be pressed, when the device saves the
new configuration to the SD card,  sets time on the RTC module,
reboots and continues to run according to the new
configurations. 
Note, that once configuration mode is entered, the device will
reboot, even if the process does not succeed, when red light
flashes for 3 seconds before the device proceeds to reboot.

Amber light flashes

Execution halted, probably an SD Card failure.
Device automatically reboots after 3 minutes.
Reboot can be triggered with the user/reboot
buttons.

Try:

Try:

Try:

Except:

Main

Execution halted, probably failed to acquire UTC.
Device automatically reboots after 3 minutes.
Reboot can be triggered with the user/reboot buttons.
Blocking configuration mode can be entered by
pressing the user button for 3 seconds - indicated by
blue LED flashing.

Read Config File

Set Version Numbers

Overwrite Configurations
(debug)

Get Current Time

Check Configurations

Check for Update

Amber light flashes

Status Logger

User Button

Mount SD Card

Except: Red light blinks

Except: Yellow light blinks

Amber light flashes

Stage 1

Stage 2

Stage 3

Initialisation of
critical features

System management and UTC
acquisition

Initialisation of LoRaWAN, Sensors
and the Event Scheduler 

Initialise File System

Get Dict of Sensors

Initialise LoRaWAN

Initialise Temperature
Sensor

Initialise PM Sensors

Start Event Scheduler

Start Heartbeat

Update Current Time via
GPS

Red light flashes

Initialisations of further threads are halted.
Already initialised threads and timed interrupts continue to run.
Device does not reboot automatically.
Reboot can be triggered with the user/reboot buttons.
Parallel Configuration mode can be entered by pressing the
user button for 3 seconds - indicated by blue LED flashing.

Green light
blinks 3x

Successful
Initialisation

Status Logger
The Status Logger is the main logger
used to log all exceptions and information
to the SD card (status_logger.txt), and to
the terminal as well.
Levels: Critical, Error, Warning, Info and
Debug

SD Card

An 16GB or larger SD Card is
used to log all data, errors and
configurations.
A 16GB card should last about
5 years.

User Button
Initialise an interrupt triggered by the button
labelled 'CONFIG' on the expansion board.
A press shorter than a second triggers a soft
reset, while holding down the button for 3
seconds enters configuration mode.
Should the soft reset fail, the user will have to
press the reset button on the pycom board.

Read Config File

Read a file (config.txt) that
contains a JSON style
dictionary containing all the
configurations. The file is
converted into a python dict
object that is shared globally.
If the file does not exist, it
creates an empty one.

Version Numbers

There are two types of Version Numbers that
are set by the developer here. 
The first one is the format version, which is
used to tell the decoder at the back-end what
format scheme the device uses to encode the
LoRa messages.
The second one is the code version, which is
the git tag corresponding to current commit.
The code version is important to compare
differences upon the event of an OTA update.

Overwrite
Configurations

Read a JSON file from flash if it
exists. Overwrite the contents of
the config dict with the contents
of the JSON file for debug
purposes. Developer use only.

Get Current Time

Check
Configurations

Check if all the keys in the configuration have
a value assigned. The config dict is compared
to a default one to see if all keys are present.
It is also checked if the device ID in the config
dict does not match the ID of the device to see
if the SD card has recently been moved from
one device to another.
Should any of the checks fail, the config dict is
reset with the default one, configuration mode
is entered, and the user is forced to configure
the device.

Check for Update

Check if an update has recently been
triggered on the device. If there is an update
scheduled, the current code version is
compared to the one on a server, yellow light
flashes, and the software is updated over
WiFi. The device then proceeds to reboot.

Initialise File
System

Check if all required directories exist on the
SD card. If a directory is missing, create it.
All files are deleted from the 'Current' and
'Processing' directories (except the LoRa
Ring Buffer) to clean up data from the
previous boot.

Get Sensors

Get a dictionary of sensors from the
configuration. This is a dictionary of
sensors, which are selected by the
user. 

Initialise LoRaWAN
If LoRaWAN is enabled by the user, the
device attempts to connect to The Things
Network using OTAA.
In the LoRa send method, the most
recent message is popped from the stack
and sent over LoRa to the given port with
the required format.
The stack (LoRa Ring Buffer) stores
unsent messages, to make sure
everything will be sent, even if there is no
connection for a period of time.
Messages older than a month are
automatically deleted, and at full capacity
it is guaranteed that 22 days worth of
backed-up data is dealt with, provided
that a stable connection returns.

 Temperature &
Humidity Sensor

If the temperature & humidity sensor is enabled by
the user, a class object of the chosen sensor is
initialised (default to SHT35). A periodic interrupt is
triggered from the main thread, which reads the
current temperature and humidity, and logs it to the
terminal and to a file in the 'Current' directory. The
period is set by the user, and it is recommended to
be more than 3 minutes to save processing power
and mitigate heating effects. Missed readings are
logged, and a red LED blink is scheduled to let the
user know something went wrong. If the device
keeps blinking, the sensors are worth checking.

PM Sensors
Start a thread for each enabled PM sensor,
which reads and logs sensor data to the
terminal and to a file in the 'Current' directory.
The reading is triggered by a periodic interrupt
every second. Upon initialising the thread
there is a warm-up period specified by the
user, during which no readings are logged to
make sure the sensors have time to stabilise.
Missed readings are logged, and a red LED
blink is scheduled to let the user know
something went wrong. If the device keeps
blinking red, the sensors are worth checking. 
If none of the PM sensors are enabled, a
transistor makes sure that nothing gets
powered by the PM1 and PM2 Grove sockets.

PyonAir - pycom Flow Chart

Event Scheduler

The Event Scheduler is responsible for
triggering periodic events such as
calculating sensor averages, getting
position over the GPS, and sending data
over LoRaWAN. Upon initialisation it
calculates when the first event should
occur, so the interval (s) is divisible by the
number of seconds in the day that will
have passed by the first event. The first
event then starts a periodic interrupt with
the given interval to set up the event
queue.

Calculating
Averages

Calculating averages happens at the end
of each interval. It takes the raw data files
of enabled sensors (PM1, PM2, TEMP)
from the 'Current' directory, and moves it
to the 'Processing' directory. It then takes
the average of requested columns and
constructs a LoRa message with a given
format based on the type of sensors that
are enabled. The LoRa message is
pushed to the LoRa Ring Buffer, and a
copy is appended to a file separated by
months in the 'Averages' folder in the
'Archive' directory. The raw data is then
moved from the 'Processing' directory to
the 'Archive'.

Get Position via GPS
Upon a GPS event blue light blinks, a
transistor is turned on to power the GPS
module and a serial bus is initialised to
communicate with the sensor. Since the
maximum number of UART buses are 3 on
the pycom board, and each PM sensor uses
one, the terminal output is disabled while the
GPS operates. The GPS continuously
receives and parses sentences from the
satellites until the desired quality is reached.
The desired quality depends on the
percentage of time elapsed from the timeout.
When latitude, longitude and altitude are
updated, a LoRa message is constructed with
the given format, and pushed to the LoRa
Ring Buffer. The message is also logged to
'Archive'.
The device also recognises if the GPS is
enabled in configurations, but the module
itself is not connected. In that case the thread
times out in 10 seconds instead of the timeout
set by the user.

Configuration

LoRa Downlink
Commands

LoRaWAN is capable of receiving
downlink messages from the gateway
for a brief amount of time after having
transmitted an uplink message. The
device currently accepts four
commands; rebooting the device,
triggering an OTA software update,
updating the WiFi credentials, and
doing all three simultaneously. 
It is not recommended that downlink
messages require confirmation and it is
important to note that commands only
get sent after sending an uplink
message, therefore it could take up to
two intervals for the command to
execute.

Schedule LoRa Messages
The Event Scheduler is also responsible to limit
airtime over LoRa. Currently, the Fair Access
Policy on TTN limits the airtime to 30s per day.
The event scheduler keeps track of how many
messages it has sent on the day, and schedules
1-4 randomly timed messages during an
interval. The number of messages depends on
the size of the Lora Stack, the number of
messages sent on the day, and also on the
length of the interval. 
Real-time transmission is guaranteed if the
interval is less than 4 minutes when the stack is
empty, and less than 15 minutes when the stack
is full. The absolute minimum interval is 1
minute, provided that it takes 30 seconds for the
LoRa thread to finish, and there needs to be
time for at least two, to send the message of the
current interval, and potentially a message
sitting deeper in the stack.

Start Heartbeat

Pycom's built-in heartbeat has to be turned off
and back on again every time the LEDs are
used, and it often causes an error, which forces
the device to reboot itself. Therefore, the
heartbeat is simulated using a green LED blink
every 5 seconds triggered by a periodic timer
interrupt from the main instead of the built-in
pycom method.

Update Time via GPS
If getting current time in Stage 1 did not involve
using the GPS, then start a thread to update
time from the GPS. This is necessary, because
the time acquired by the GPS module is more
accurate than the time set by configuring the
device over WiFi.

Modular Code
The code was designed modular to encourage
people to fork and contribute to the project. To
add support for a new sensor look for the
following parts of the code to change:
main.py/Stage 3/call initialisation, intialisation.py,
strings.py, config_page.py, and lastly add the
thread that uses your sensor's library.

Indicator LEDs

Preferences
There are a range of preferences on
the configurations page for the user to
choose from. 
The device is quite modular, meaning
that most of its functions can be turned
on and off independently from one-
another, and the frequency of data
acquisition can also be specified.
(Attention should to be paid to the units
of time given for each period/interval.) 
The user will also have to assign a
unique number for each initialised
sensor. It is recommended that LoRa is
enabled. To register the device on TTN,
the device EUI is required, which can
also be obtained from the
configurations page.

http://192.168.4.10/



